MAP: A Computational Model for Adaptive Persuasion
نویسندگان
چکیده
While a variety of persuasion agents have been created and applied in different domains such as marketing, military training and health industry, there is a lack of a model which provides a unified framework for different persuasion strategies. Specifically, persuasion is not adaptable to the individuals’ personal states in different situations. Grounded in the Elaboration Likelihood Model (ELM), this paper presents a computational model called Model for Adaptive Persuasion (MAP) for virtual agents. MAP is a semi-connected network model which enables an agent to adapt its persuasion strategies through feedback. We have implemented and evaluated a MAP-based virtual nurse agent who takes care and recommends healthy lifestyle habits to the elderly. Our user study show that MAP-based agents are able to change others’ attitudes and behaviors intentionally, interpret individual differences between users, and adapt to user’s behavior for effective persuasion.
منابع مشابه
An Adaptive Computational Model for Personalized Persuasion
While a variety of persuasion agents have been created and applied in different domains such as marketing, military training and health industry, there is a lack of a model which can provide a unified framework for different persuasion strategies. Specifically, persuasion is not adaptable to the individuals’ personal states in different situations. Grounded in the Elaboration Likelihood Model (...
متن کاملDeveloping a Model Based on Geospatial Information Systems (GIS) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for Providing the Spatial Distribution Map of Landslide Risk. Case Study: Alborz Province
Landslide is one of these natural hazards which causes a great amount of financial and human damage annually allover the world. Accordingly, identification of areas with landslide threat for implementation of preventive measures in order to confront against the instability of hillsides for reduction of potential threats and related risks is very important. In this research a new method for clas...
متن کاملGraph-based Visual Saliency Model using Background Color
Visual saliency is a cognitive psychology concept that makes some stimuli of a scene stand out relative to their neighbors and attract our attention. Computing visual saliency is a topic of recent interest. Here, we propose a graph-based method for saliency detection, which contains three stages: pre-processing, initial saliency detection and final saliency detection. The initial saliency map i...
متن کاملStatistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation
Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...
متن کاملControlling Nonlinear Processes, using Laguerre Functions Based Adaptive Model Predictive Control (AMPC) Algorithm
Laguerre function has many advantages such as good approximation capability for different systems, low computational complexity and the facility of on-line parameter identification. Therefore, it is widely adopted for complex industrial process control. In this work, Laguerre function based adaptive model predictive control algorithm (AMPC) was implemented to control continuous stirred tank rea...
متن کامل